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Abstract

Agro-ecological transition is an important step towards sustainable and resilient
food systems in the face of systemic threats from climate-change-induced dis-
turbances. In smallholder systems, the transition towards agro-ecological pest
management (APM) offers the prospect of reconciling agronomic performance
with environmental and social imperatives by replacing indiscriminate chemi-
cal applications with locally-derived biorational options. However, the efficiency
implications of APM transitions remain insufficiently documented, particularly
in smallholder systems and in relation to invasive alien pests that are prone to
resurgence and reinfestation under suboptimal management. This paper evalu-
ates whether the adoption and intensification of APM improve both technical
and eco-efficiency in smallholder settings, with a focus on the Oriental fruit fly
(Bactrocera dorsalis L.) in mango (Mangifera indica L.) orchards. We apply a
latent class stochastic metafrontier model to a sample of 418 orchard managers
from Makueni County, Kenya, selected through a multistage sampling procedure.
This approach enables us to classify orchard managers into non-adopters, non-
intensive adopters, and intensive adopters, and to compute meta-technical and
meta-eco-efficiency scores, from which we derive an environmentally adjusted
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efficiency measure. We find no significant sample selection bias and treatment
effects are estimated using a doubly robust Inverse-probability-weighted regres-
sion adjustment estimator. Intensive adoption had a positive average treatment
effect (ATE) and average treatment effect on the treated (ATT) of 8.1% and
5.6%, respectively, whereas non-intensive adoption showed no significant effect
(ATE = –1.1%, ATT = –1.5%). Efficiency effects were heterogeneous and
inefficiency varied with orchard manager’s APM adoption intensity, education
level, orchard prospects, group membership, and participation in knowledge co-
creation activities. Policymakers and development practitioners should support
farmers by institutionalising continuous learning and establishing multi-pronged
participatory training platforms that use existing social networks.

Keywords: agroecology, agro-ecological pest management, fruit fly, technical
efficiency, eco-efficiency, environmentally adjusted efficiency, mango, latent class
stochastic metafrontier

JEL Classification: C38 , D24 , Q12 , Q16 , Q57

1 Introduction

Agriculture faces the dual challenge of simultaneously decoupling productivity from
environmental footprints while improving the food security for a growing global pop-
ulation [1]. Historically, attempts to improve productivity have relied on conventional
intensification approaches, increasingly relying on external inputs to bolster food pro-
duction and stabilise yields. The Green Revolution epitomised this paradigm, where
the intensive use of synthetic pesticides, fertilisers, and improved cultivars drastically
increased global food production by more than 50% [2, 3]. Although this intensifi-
cation mitigated the need for additional land conversions, reducing the pressure on
marginal lands, forests, and riparian areas to meet increasing food demand, the cumu-
lative and pervasive reliance on synthetic damage-control inputs such as pesticides
has led to a series of ecological, economic, and health-related concerns [4–7]. This
has prompted calls for sustainable transitions that leverage ecological processes to
maintain or increase yields.

Recently, a growing stream of literature has examined the extent to which sus-
tainable intensification can match conventional yields in practice [8–11]. This debate
is particularly relevant for smallholder systems, where resource constraints, as well
as biotic and abiotic pressures, pose increasing threats to agricultural sustainability.
Unlike organic systems that have been shown to achieve lower yields between 19–25%
so that an increase of 23–33% in land size is required to meet the current output levels
under conventional systems [12], agro-ecological systems have been found to improve
yields as well as land and labour productivity in smallholder systems by countering
local constraints [8, 13].

Mango (Mangifera indica L.) is Kenya’s second most important fruit crop after
banana [14]. However, tephritid fruit fly, particularly Bactrocera dorsalis (Diptera:
Tephritidae), poses a major constraint to mango productivity and marketing, causing
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fruit and quality loss if improperly managed. This polyphagous pest inflicts exten-
sive damage, with yield losses reported to range from 30% to as high as 90% [15, 16].
Female flies oviposit within the fruit, and subsequent larval feeding not only renders
the fruit unmarketable, but also predisposes it to secondary bacterial infections, com-
pounding yield losses [15]. Conventional fruit fly control typically relies on chemical
insecticides, which often act quickly to reduce infestations but are often associated with
high external costs, including pesticide residues, human health risks, loss of beneficial
insects, and pest resistance [17]. In contrast, agro-ecological pest management (APM)
offers a holistic alternative through a suite of locally available eco-friendly practices
[18–26], including orchard sanitation, the release of natural enemies such as ovivorous
ants and parasitoid wasps, the application of biopesticides, food baits, male annihila-
tion technique [27], and other cultural and indigenous controls [28–31]. Transitioning
to effective APM requires farmers to synchronise and intensify pest-control efforts
not through blanket chemical applications but by adopting ecologically grounded,
indigenous, locally available, knowledge-intensive biorational practices.

It has been argued that the conscious adoption of agro-ecological practices can
potentially close yield gaps, maintain ecological integrity, reduce reliance on synthetic
pesticides, and improve resource-use efficiency at the farm level [1, 17, 32, 33]. Farm-
level analyses in Kenya found that APM-adopting mango smallholders obtained higher
yields [29, 34] and higher net income [29, 34–37] while using significantly less inorganic
pesticides [29, 38]. It has also been found that APM uptake increases inclusivity in
decision making by enhancing women empowerment [39]. These findings support the
optimistic view that APM can improve both productivity, social and environmental
performance of farming systems, ultimately enhancing eco-efficiency.

Eco-efficiency (EE) refers to the ratio of economic value added to the associated
deleterious environmental impacts [40, 41]. The EE index requires optimising the
ratio of agricultural outputs to environmental impacts and has been promoted as a
strategy to quantify the benefits of sustainable pest management, such as APM [42–
44]. By lowering the environmental footprint of food production without sacrificing
yield, APM can increase the output gained per unit of environmental cost, a key
requirement for sustainability.

Extant studies on the EE of mango production vary considerably in scope, context
and methodology. Basset-Mens et al. [45] used a cradle-to-farm-gate life cycle anal-
ysis to compare locally grown and imported mango, apple, peach, and clementine in
French markets. Their results showed that mango generally performed well in various
environmental impact categories such as eco-toxicity and eutrophication. However, the
authors acknowledged that fruit fly was not as problematic in these contexts as it is in
Africa. Additionally, due to the broader scope of the study, there were uncertainties
in obtaining representative data for the individual crops, which could have increased
uncertainty in the results. Similarly, in southern Iran, Rasoolizadeh et al. [46] evalu-
ated the EE of five tropical fruits (guava, mango, banana, jujube, and sapodilla) using
life cycle analysis approach. Mango emerged with the highest EE score, outperform-
ing the other fruits. Although the life cycle analysis procedure is a useful approach
in aggregation of environmental impacts, it is a subjective weighting method that
relies on expert judgement in the assignment of pressure weights. This can potentially
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bias estimates as the resulting EE index could be a function of the expert’s values
and beliefs [47]. To overcome the pitfalls of life cycle analysis, Heidenreich et al. [48]
employed an input-oriented order-m approach with Data Envelopment Analysis to
measure EE among mango, macadamia, coffee and cocoa farms in Kenya and Ghana.
Their findings indicated substantial variability, with mango farms ranking as least
efficient and requiring a 25% cut in environmental pressures to reach optimal perfor-
mance. Although the study accounted for regional heterogeneities in the production
environment, the authors presupposed uniform production technologies and ecological
conditions at the orchard level. The assumption of uniform production technologies is
often restrictive and is rarely observed in smallholder systems.

Existing studies on the efficiency effects of pest management strategies have
predominantly focused on economic performance, particularly technical efficiency
(TE), while largely overlooking the environmental implications of such practices. For
instance, Yi et al. [49] investigated productivity and TE disparities among shallot
farmers in Indonesia, distinguishing growers by their compliance to alternative pest
management protocols. Similarly, Rahman and Norton [50] examined the impacts of
integrated pest management adoption on the TE of eggplant growers in Bangladesh.
More recently, Rodrigues et al. [51] evaluated the TE of biological pest control adop-
tion in Brazil, accounting for heterogeneity between intensive and non-intensive user
subgroups.

In this paper, we contribute to this discourse by evaluating whether the transition
to and intensive adoption of APM can enhance multidimensional farm-level efficiency.
Following Andrieu et al. [52], we implement a multi-criteria approach to explicitly
accommodate both economic and ecological performance of APM by analysing EE
alongside the traditional TE. We then derive an environmentally adjusted efficiency
score that reflects the dual objectives of optimising input conversion and minimising
environmental externalities, providing a better picture from a sustainability per-
spective. To the best of our knowledge, this is the first attempt at examining the
multidimensional efficiency effects of agro-ecological transitions in smallholder sys-
tems, particularly in relation to invasive alien pests that are prone to resurgence and
reinfestation under suboptimal management.

The remainder of the paper is structured as follows. Section 2 describes the mate-
rials and methods including the study area, sampling procedure, data collection, and
analytical framework. In Section 3, we present the empirical results and discuss the
findings. We then conclude in Section 4 by outlining avenues for future research
and prospects for scaling up agro-ecological transitions in smallholder systems, with
reference to broader policy implications.

2 Materials and methods

2.1 Study area, sampling technique and data collection

We utilised a subset of observational data from a household survey conducted in
Makueni county, Kenya. Makueni County spans an area of 8,214 square kilome-
tres, located between latitudes 1◦35′ and 2◦59′S and longitudes 37◦10′ to 38◦30′E
(Figure 1), with a population of approximately 1,098,584 [53]. The county majorly
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has a low-lying terrain, with diverse agro-ecological zones (see Figure 1). The hillier
sections receive about 800–1200 mm of rainfall annually, whereas its lower plains
receive as low annual rainfall as 250–400 mm. The county’s average annual rainfall is
estimated at 500–750 mm making it ideal for growing most crops. Mean air temper-
atures range from 20.2◦C to 35.8◦C, with the hills remaining noticeably cooler [54].
This warm climate favours production of fruit crops such as mango and citrus.

Fig. 1: Map of Makueni county showing its agro-ecological zones and location of sampled
households.

To determine the required sample size, the Yamane [55] formula was applied, using
a known population of 28,696 mango farmers in the county [56]. A multistage sampling
strategy was implemented. First, Makueni County was purposively selected because
it is Kenya’s main mango producing region, facilitated, in part, by its proximity to
important export hubs, such as Nairobi and Mombasa, as well as favourable climatic
conditions for mango production. In the second stage, the Makueni, Mbooni, and Kaiti
sub-counties were chosen due to their prominence in mango production. In the third
stage, six wards and 12 sub-wards were randomly selected within these sub-counties.
Finally, since almost all households in the selected areas grow mango, systematic
random sampling was employed within these areas to select every third household.

Mango orchard managers were identified as key respondents due to their direct
control and awareness of most orchard-level activities. The interviews were conducted
between August and September 2023 by trained enumerators, with informed consent
obtained at the beginning of each interview. Of 434 orchard managers interviewed, nine
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responses were excluded after controlling for non-exposure bias, and seven were dis-
carded due to incomplete responses. This resulted in 418 valid responses for subsequent
analyses.

2.2 Analytical framework

2.2.1 System boundary and life cycle inventory

We adopted a farm gate approach as the system boundary, so that production extends
only to the point where materials leave the orchard, assuming no value addition occurs
within the orchard. This delimitation ensures that all input quantities and ecological
pressures are under direct control of the orchard manager. To allow global comparison,
the functional unit chosen was one hectare (ha) of mango orchard and all inputs,
outputs, and environmental pressures were normalised per ha. Typically, smallholder
mango production involves farm activities such as tillage, fertilisation, control of pests,
diseases, and weeds, and harvesting.

The selection of an eco-efficiency indicator depends on the availability of data, the
interest of the policymaker, and the intended use of the resulting scores [11, 41], and
remains largely an empirical matter [57]. We considered six environmental pressures
from mango production following the relevant literature (Table 1). Water resource
pressures were excluded because smallholder mango systems in SSA are predominantly
rainfed.

We employed the value-added approach for the desirable output, net value added
(NVA), which permits a natural interpretation of the EE scores. Since a typical mango
farming household consumes part of its production, the NVA from mango was cal-
culated incorporating the value of the fruit consumed. Following Kuosmanen and
Kortelainen [47], labour costs were not deducted from the NVA because they represent
wages and rents circulating within society, rather than costs of production. In contrast
to regions where collusive practices among orchard owners and financiers intensify
labour exploitation, thereby diminishing the overall societal benefits from farming,
such as those documented by Sacramento and Cañete [72] in the context of Philippine
mango fruit farming, the relatively competitive labour market in Makueni discourages
such collusion behaviours, ultimately ensuring better protection for orchard labourers.
Machinery depreciation and maintenance were not considered because smallholders in
developing countries such as Kenya typically use negligible amounts of machinery in
mango production.

All orchards were assumed to have a uniform selling price to ensure that variations
in economic performance arise from technical management rather than price differ-
ences. Based on insights gathered from key informants, the market price of mango
typically ranges between KES 15–30 per kilogram of fresh fruit, with fluctuations
largely influenced by seasonality. Given that all yield data reported in this study per-
tain to the main (on-) season, when market prices are generally lower due to peak
production, we adopted a conservative pricing approach by using the lower bound of
the price range (KES 15/kg, corresponding to ≈ USD 0.117/kg based on the exchange
rate at the time of the survey).
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2.3 Empirical framework

2.3.1 Latent class stochastic metafrontier

To assess the efficiency with which orchard managers convert resources into desir-
able outputs while limiting undesirable by-products, we employ a production-frontier
approach rooted in classical efficiency theory [73]. In this framework, it is assumed
that each orchard manager uses the inputs optimally to achieve the maximum possible
output with minimum deleterious environmental impacts such as pollution or resource
depletion. We adopt an output-oriented perspective to evaluate how much orchard
managers can increase their desirable outputs without consuming additional inputs
or increasing deleterious by-products. From a sustainability perspective, an orchard
can be considered output inefficient while still having room to reduce environmen-
tal impacts. Pareto–Koopmans efficiency is achieved when no further improvements
in yield or net value added are possible without increasing input or environmental
degradation, thus balancing productivity, resource conservation, and broader societal
goals [74, 75]. The production frontier represents the highest possible production level
under similar technological and environmental conditions, and any deviation from this
frontier is attributed to inefficiency [76].

Smallholders rarely use homogeneous technologies due to resource and socio-
economic constraints, requiring a mechanism for accounting for potential technological
heterogeneity in their production. However, the qualitative classification of individu-
als into technology-specific groups based on observed and unobserved characteristics
is often a complex process that risks introducing bias, particularly when threshold
identification levels are non-trivial. To address this challenge, we employ a latent
class stochastic frontier (LCSF) procedure formalised in Greene [77] to estimate the
posterior probability, Π(i, j), of an orchard manager i’s membership in class j, con-
ditioned on observed (separating) variables si. The class assignment is usually based
on the largest Π(i, j) obtained for class j using Bayes rule and parametrised using a
multinomial logit function as:

Π(i, j) =
exp(si; Ωj)∑C
c=1 exp(si; Ωj)

(1)

The probability of membership in class j, is computed as:

Pr(i, j) =
2√

σ2
v|j + σ2

u|j

ϕ

 ξi|j√
σ2
v|j + σ2

u|j

Φ

−
(
σu|j

σv|j

)
ξi|j√

σ2
v|j + σ2

u|j

 , (2)

and the associated loglikelihood function is the weighted sum of the j-class likelihood
functions:

logL =

N∑
i=1

log

 2∑
j=1

Π(i, j) · Pr(i | j)

 (3)
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The determination of the optimal number of classes is guided by the model’s informa-
tion criterion. The Bayesian Information Criterion is often preferred and the model
with the lowest absolute value is selected.

We first classified farmers as adopters or non-adopters of APM, according to the
criteria described in Owili et al. [30]. However, without an objective APM inten-
sity threshold to define cut-off levels, the number of distinct adopter subgroups and
the heterogeneity within the adopter class remained indeterminate. Consequently, we
applied the LCSF model exclusively to the subsample of APM adopters. The approach
identified two classes of APM adopters, which we classified as non-intensive and inten-
sive adopters. We continue this discussion in Section 3.3.1. Thus, together with the
non-adopter category, our sample consisted of three classes of orchard managers.

The ideal approach to controlling for selection bias in observational studies is to
use a randomised experiment so that all individuals have equal chances of assignment
to each treatment class. However, this approach was not feasible in this study due
to cost implications. To test for the presence of selectivity bias in the presence of
heterogeneous technologies, we employ the bias-corrected LCSF procedure proposed
by Dakpo et al. [78]. The approach uses a more efficient quadrature method within
the LCSF framework as an alternative to the maximum simulated likelihood approach
derived by Greene [79], and mitigates confounding bias from unobservables. In our
case, the coefficient of the selectivity variable RHO (ρ) was not significantly different
from zero at 5%, in the pooled and class-specific frontiers, indicating that our sample
does not suffer from selection bias. This implies that the standard LCSF suffices to
estimate regime-specific frontiers and efficiencies.

Following Aigner et al. [80] and Meeusen and van Den Broeck [81], we estimate
two output-oriented stochastic frontiers for each of the three classes of farmers: (i) a
production frontier that captures technical efficiency and (ii) a damage or pressure-
generating technology (PGT) function that assesses eco-efficiency, as:

lnYi|j = ln f j
(
Xik|j ,β

)
+ vi|j − ui|j , TEi|j = exp

(
−ui|j

)
,

lnNVAi|j = lnDj
(
Pik|j , τ

)
+ νi|j − µi|j , EEi|j = exp

(
−µi|j

)
PGT = {(NVA,P) ∈

RN+1
+ | NVA can be produced with P pressures},

(4)

where lnYi|j is the logarithm of mango yield per hectare for the ith orchard managed

by a farmer in the jth class, Xik|j is a 1 × K vector of normalised positive inputs,
and β is the coefficient vector of interest. Similarly, lnNVAi|j denotes the logarithm
of net value added, Pik|j a vector of normalised environmental pressures, and τ the
parameter vector. For each orchard i = 1, . . . , N and class j = 0, 1, 2, vi|j ∼ N(0, σ2

v)
and νi|j ∼ N(0, σ2

ν) are iid white-noise errors, independent of the inefficiency terms.

ui|j ≥ 0 ∼ N+
(
0, σ2

u

)
and µi|j ≥ 0 ∼ N+(0, σ2

µ) are half-normal inefficiency terms.
TEi|j ∈ [0, 1] and EEi|j ∈ [0, 1] denote technical and eco-efficiency, respectively.

The zero-observation problem is a common productivity analysis pitfall, particu-
larly in smallholder systems, where farmers may fail to apply some inputs, resulting in
a large proportion of genuine zeros in the dataset. To accommodate this, we apply an
inverse hyperbolic sine (IHS) transformation, which, unlike the logarithm, is defined
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for zero and negative values and naturally approximates ln(x) for a sufficiently large
x [82]. Since the IHS transformation can be adversely affected by the chosen unit
of measurement [83], following Aihounton and Henningsen [82], we perform several
tests to determine the appropriateness of the chosen units of measurement and the
corresponding scaling factors. The results are displayed in Table A2 of Appendix A.

We perform likelihood ratio (LR) tests for the deterministic kernels ln f j (•) and
lnDj (•) of Equation (4). In both cases, the test strongly rejects the Cobb-Douglass
specification in favour of the log-linear Translog functional form (see Table A1 of the
Appendix A). Although often associated with multicollinearity, the Translog specifi-
cation is flexible and has the ability to capture non-linearities in the regressors, allows
for potential substitutions among inputs, and places no constraints on returns to scale
[84]. All terms of Translog are normalised by their geometric means to allow the first-
order coefficients of the stochastic frontier to be interpreted as partial elasticities with
respect to the mango yields at the sample mean [85]. To satisfy the regularity condi-
tions, we impose monotonicity on all inputs using a three-step procedure developed
by Henningsen and Henning [86].

To account for technological heterogeneity across the three adoption classes and
enable meaningful benchmarking, we embed the LCSF within a metafrontier frame-
work. A persistent misconception is that the standard LCSF automatically provides
a common benchmark for all technology regimes, making efficiency scores directly
comparable. Many recent studies fall prey to this error by reporting cross-technology
efficiency comparisons from LCSF results. Since the estimation of LCSF implies tech-
nology heterogeneity, it follows, therefore, that a metafrontier estimation is required.
While LCSF is robust at uncovering unobserved “technology regimes”, it does not pro-
duce an enveloping frontier for benchmarking. Only by nesting class-specific frontiers
under a shared metafrontier can one validly compare efficiency scores across regimes
[87].

To justify the metafrontier estimation, we conduct generalised likelihood-ratio
(GLR) tests. The GLR test statistic follows a Chi-square distribution under the null
hypothesis and, in our case, is obtained as:

−2

(
log L

(
ln f0(•)

)
+

N∑
i=1

log

 2∑
j=1

Π(i, j) · Pr(i, j)

− log L
(
ln fM (•)

))
(5)

where log L
(
ln f0(•)

)
is the loglikelihood of the non-adopters frontier model and

log L
(
ln fM (•)

)
is the loglikelihood of the metafrontier. The GLR tests strongly

rejected the null hypotheses, confirming that the technologies used among the
three adoption groups are heterogeneous and differ systematically (Table A1 of the
Appendix A). In other words, farmers in the three adoption groups have different
production possibility frontiers, making them directly incomparable. Empirically, this
suggests that estimating a metafrontier provides a better fit compared to the three
separate class-specific frontiers. By definition, a metafrontier is an overarching technol-
ogy that encompasses multiple class-specific frontiers, forming a common benchmark
technology available to the whole industry and is similar for all farmers [87, 88].
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In a two-stage procedure, we first estimate the class-specific frontiers as in
Equation (4). In the second stage, the predicted fitted values ln f̂ j(•) and ln D̂j(•)
from the three groups are pooled to construct metafrontiers, following Huang et al.
[89]:

ln f̂ j(Xi|j ,β) = ln fM (Xi|j ,β)− uM
i|j + vMi|j , MTEi|j = e−uMi|j × e−ui|j ,

ln D̂j(Pi|j , τ ) = lnDM (Pi|j , τ )− µM
i|j + νMi|j , MEEi|j = e−µMi|j × e−µi|j ,

(6)

where Equation (6) has the usual properties of the frontiers given in Equation (4);
however, uM

i|j and µM
i|j denote the non-negative technology gap ratio (TGR) and the

PGT gap ratio (PTGR) component for production and eco-efficiency frontiers, respec-
tively, and are distributed as uM

i ≥ 0 ∼ N+(0, σ2
u) and µM

i|j ≥ 0 ∼ N+(0, σ2
u). In

this case, vMi|j ∼ N(0, σ2
ν) and νMi|j ∼ N(0, σ2

ν) may not be iid and are therefore
assumed to be asymptotically normally distributed. MTE and MEE refer to the meta-
technical efficiency and meta-eco-efficiency scores, respectively. The MTE and MEE
scores are directly comparable between the various technology classes relative to the
metafrontier.

In mango production, TGR represents the ratio of predicted mango yield of a class-
specific production frontier to the potential mango yield given by the metafrontier,
and thus shows the position of the class-specific production frontier relative to the
frontier achievable by the industry as a whole. Thus, the metafrontier allows for the
segregation of production inefficiencies into those caused by poor agronomic practices
and those caused by technology gaps within the industry. In this study, technology gaps
quantify the extent to which various pest management technologies deviate from global
best practice and therefore can inform policy interventions aimed at the promotion
of best-performing pest management strategies. These gaps arise from the choice of a
particular pest management technology from the various technologies available to the
industry as a whole, depending on their accessibility to the individual farmers and the
rates of technology adoption.

2.3.2 Environmental adjustment procedure

We compute environmentally adjusted composite measures for both efficiency and the
technology gap as:

MTEadj
i|j =

∏
q∈{uM

i|j , ui|j , µ
M
i|j , µi|j}

e−q = exp
[
−
(
uM
i|j + ui|j + µM

i|j + µi|j
)]
,

TGRadj
i|j =

∏
r∈{µM

i|j , u
M
i|j}

e−r = exp
[
−
(
µM
i|j + uM

i|j
)]
.

(7)

The multiplicative operator endows both composites with several desirable properties.
First, strict monotonicity holds in every argument so that an improvement in either
MTEi|j or MEEi|j raises MTEadj

i|j , and an improvement in either TGRi|j or PTGRi|j
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raises TGRadj
i|j , ceteris paribus. Second, the products are bilinear, symmetric and homo-

geneous of degree two, ensuring that no single component is given precedence over its
counterpart. Third, the aggregation rule is non-compensatory and effectively penalises
poor performance so that a deficiency in one component cannot be masked by supe-
riority in the other. As any component approaches zero, the corresponding composite
measure is driven sharply downwards, constraining overall performance by the weakest
link. Consequently, the formulation is consistent with the notion that sustainable per-
formance enforces holistic progress both in technical efficiency and eco-efficiency, while
aiming at closing the technology gaps as well. Finally, since each component index sat-
isfies: MTEi|j ,MEEi|j ,TGRi|j ,PTGRi|j ∈ [0, 1]; hence, the adjusted scores MTEadj

i|j

and TGRadj
i|j are properly bounded within the unit interval, rendering interpretation

straightforward.
For policy purposes, we model drivers of environmentally adjusted inefficiency,

MTIEadj
i|j , using a fractional probit as:

MTIEadj
i|j = G(δ;Zi|j) = δ0 + δ1Z1i|j + · · ·+ δnZni|j

MTIEadj
i|j = 1−MTEadj

i|j

(8)

where G(·) is the Bernoulli specification of the quasi-maximum likelihood estimator
of the standard normal cumulative density function with a probit link, (δ0|j , · · · , δn|j)
are the parameters of interest, and (Z1i|j + · · · + Zni|j) are exogenous variables that
are hypothesised to influence orchard-level adjusted inefficiency. Since it is widely
recognised that multi-step estimation procedures are generally associated with biased
standard errors [90, 91], we apply a bootstrap procedure following Simar and Wilson
[92] and Simar and Wilson [93] with 1000 replications to correct the standard errors.

2.3.3 Inverse-probability-weighted regression adjustment for
multi-valued treatment effect estimation

To determine the effect of APM transition and intensification regimes, we subject
the MTEadj

i|j scores to an inverse-probability-weighted regression adjustment (IPWRA)

procedure. In this framework, for each adoption level A ∈ {0, 1, 2} where 0, 1 and 2
denote non-adopters, non-intensive adopters and intensive adopters, respectively, the
average potential outcome (POMean) is estimated as:

Θ̂(a) = E

θ̂(a, Zi) +
1 [Ai = a]

(
MTEadj

i|j − θ̂(a, Zi)
)

P̂ ra(Zi)

 . (9)

Here, θ̂(a, Zi) denotes the predicted outcome under treatment level a and is mod-

elled using a fractional probit specification such that θ̂(a, Zi) = Φ
(
Ziδ̂a

)
, with Φ(·)

representing the standard normal cumulative distribution function. The probability of
receiving treatment level a is estimated using a multinomial logit model. The inclusion
of both an outcome regression and inverse probability weighting guarantees a consis-
tent estimation of treatment effects provided that either of the models is correctly
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specified and hence doubly robust. The treatment effects are then determined by com-
paring the estimated POMeans at different treatment levels, to obtain the average
treatment effect (ATE) and the average treatment effect on the treated (ATT).

ATE1,0 = E[MTEadj
i|1 −MTEadj

i|0 ] ATT1,0 = E[MTEadj
i|1 −MTEadj

i|0 | Ai = 1]

ATE2,0 = E[MTEadj
i|2 −MTEadj

i|0 ] ATT2,0 = E[MTEadj
i|2 −MTEadj

i|0 | Ai = 2]

ATE2,1 = E[MTEadj
i|2 −MTEadj

i|1 ] ATT2,1 = E[MTEadj
i|2 −MTEadj

i|1 | Ai = 2]

(10)

As a robustness check for selectivity bias from observables, we compare the IPWRA
estimates with those obtained from a propensity score matching (PSM) and regression
adjustment (RA). Whereas RA depends on a correct specification of the outcome

model θ̂(a, Zi), the PSM relies on propensity scores P̂ ra(Zi) to match an orchard
manager in a treatment class with an orchard manager from the control group based
on similar characteristics. In this case, a propensity score is a conditional probability
of an orchard manager being assigned to a treatment class based on a vector of their
observed covariates. We impose both covariate balance and common support to ensure
that for every combination of covariates, there is a non-zero probability of being treated
and untreated. To determine the potential influence of unobserved confounding in
both models, we perform a sensitivity analysis to assess the stability and validity of
our treatment effect estimates using Oster’s δ [94]. Oster’s δ indicates how strong
the influence of unobservables would need to be, relative to the influence of observed
covariates, to reduce the estimated treatment effect to zero.

It has been shown that the benefits of adopting APM do not apply uniformly
in all contexts [see 95]. To uncover heterogeneities in treatment effects, we use the
doubly robust conditional average treatment effect (DRCATE) visualisation procedure
proposed by Lee et al. [96]. This procedure models the conditional average treatment
effect (CATE) function using an augmented inverse probability weighting estimator
of a covariate of interest by combining a propensity score model with a local linear
regression for the POMeans and ATEs.

3 Results and discussion

3.1 Adoption of agro-ecological fruit fly management options

Figure 2 illustrates the distribution of adopters across three broad categories of APM
practices, including habitat management, orchard sanitation, and reactive options.
Adoption rates were moderate, with habitat management being the most adopted
category, followed by orchard sanitation and reactive options. The most common prac-
tices were regular scouting and monitoring, the management of alternate hosts, and
male annihilation, which were adopted by at least half of the respondents.

Within habitat management category, adoption was highest for regular scouting
and monitoring (53.5%), management of alternate hosts (50.2%), and inter-tree raking
(43.3%), suggesting a preference for ecologically grounded practices that are relatively
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Fig. 2: APM adoption rates by category of practice. Source: Survey Data (2023).

straightforward to implement. In contrast, adoption of more specialised practices such
as intercropping with non-host crops and trap-cropping with passion fruit remained
limited. For orchard sanitation, feeding infested fruit to livestock (45.6%) and deep
burying of infested fruits (35.2%) were the most widely adopted, whereas technical
measures like solarisation and the use of an augmentorium were negligible. The pattern
was even more pronounced in reactive control strategies in which male annihilation
(50.2%) was the only widely adopted method, while all other approaches, including
the use of biopesticides and botanical sprays, showed limited uptake. These findings
indicate the uneven diffusion of APM options, with adoption strongly skewed toward
practices that are familiar, locally adaptable, and possibly less resource-intensive.

3.2 Characteristics of adopters and non-adopters of APM

Table 2 shows the characteristics of the surveyed orchard managers, disaggregated
by their APM adoption classes. The average orchard size was 0.56 ha, confirming
that most of the producers in the sample are smallholders. On average, non-intensive
adopters used slightly more land than intensive adopters. As expected, labour con-
sumption was higher among intensive adopters than among non-intensive adopters.
Intensive adopters implemented more labour-intensive practices and also applied
slightly more inputs such as fertilisers and manure, which could have consumed
additional labour due to input application.

The intensive class exhibited greater specialisation, as indicated in their average
tree density of 164 trees/ha, compared to 108 and 136 trees/ha among non-adopters
and non-intensive adopters, respectively, on average.

On average, adopters applied 0.95 L/ha more insecticides (both organic and inor-
ganic combined) than conventional farmers. This was expected, as organic pesticides
are typically applied in larger quantities than their inorganic counterparts used by
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non-adopters. Among adopters, non-intensive users applied 1.13 L/ha of organic insec-
ticides on average, compared to 0.94 L/ha by intensive adopters, which explains the
higher overall insecticide use among adopters. As expexted a priori, intensive adopters
applied 0.23 L/ha less inorganic insecticide than non-adopters. This finding is consis-
tent with the results of Midingoyi et al. [29] and Mwungu et al. [38], who found that
adopters of integrated pest management used significantly less synthetic pesticides
than non-adopters. These results suggest that integrating multiple pest control strate-
gies can effectively reduce reliance on the often-costly chemical pesticides. In contrast,
non-intensive adopters used slightly more inorganic insecticides than non-adopters,
with an average difference of 0.06 L/ha.

In line with expectations, the amount of carbon footprints and energy deficits
were highest among the intensive class, due to their higher output levels and input
consumption, respectively. It is well established that the level of output is positively
correlated with the level of emissions [97]. Intensive adopters recorded the highest rates
of nutrient depletion, which could be due to their high nutrient efficiency. Rapid uptake
of nutrients by high-yielding trees can lead to net nutrient mining if replenishment
does not fully match crop demand. Non-intensive adopters had the lowest nutrient
depletion rates.

On average, adopters achieved significantly higher mango yields (2,231kg/ha
more than non-adopters) which translated into substantially higher net value added,
amounting to an additional KES 32,633 per ha (approx. USD 255.7 per ha). On the
other hand, intensive and non-intensive adopters recorded 4036kg/ha (approx. KES
60,548 per ha or USD 473.8 per ha) and 496.98kg/ha (approx. KES 7,455 per ha or
USD 58.2 per ha), respectively, more than non-adopters. This is in line with previous
studies that have reported increased net income from the adoption of sustainable fruit
fly management practices [29, 34–37].

3.3 Empirical results

3.3.1 Class-specific stochastic frontier elasticities

Table 3 shows the parameter estimates of the class-specific stochastic frontier for the
technical efficiency model. The coefficient of the gamma (γ) variable approximates
unity for all models, indicating that the proportion of total error variance due to
inefficiency is relatively high. This suggests that most of the deviation from the frontier
is due to inefficiency and justifies the use of the more complex stochastic frontier
procedure over simple alternatives such as ordinary least squares. Monotonicity holds
adequately for all inputs in all models (see Table A3 in Appendix A).

The LCSF identified two distinct groups among APM-adopting orchard managers.
Attempts to estimate models with additional classes failed to converge, indicating that
the two-class model was optimal and at saturation [78]. The average posterior prob-
abilities of class membership for intensive and non-intensive orchard managers based
on the LCSF is 84% and 89%, respectively. The coefficient of the separating variable
“number of APM practices adopted” is negative, implying that the likelihood of being
assigned to Class 1 decreases with higher uptake of APM practices. This suggests
that Class 1 and Class 2 can be broadly categorised as non-intensive and intensive
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Table 3: Estimates of class-specific stochastic frontier models (Translog) for
technical efficiency

Single class SF Two class LCSF

Class 1 Class 2
Non-adopters (Non-intensive) (Intensive)

Parameter Coef. (SE) Coef. (SE) Coef. (SE)

β0 0.048 (0.055) -0.100 (0.107) 0.357*** (0.061)
βLA -0.556*** (0.121) -0.643*** (0.134) -0.245* (0.144)
βFE 0.157** (0.068) 0.693*** (0.135) 0.052 (0.072)
βFU 0.191*** (0.041) -0.013 (0.129) -0.300*** (0.101)
βIN 0.275** (0.126) 0.263** (0.118) 0.240** (0.104)
βLB 0.047 (0.074) -0.609*** (0.138) 0.537*** (0.119)
βMA -0.044 (0.051) -0.816*** (0.160) -0.139** (0.070)
βLA2 -0.434 (0.321) 0.331 (0.238) 0.807*** (0.273)
βFE2 -0.115* (0.065) -0.504*** (0.125) -0.261*** (0.046)
βFU2 -0.208** (0.083) -0.321*** (0.098) -0.096 (0.069)
βIN2 -0.059 (0.128) -0.147** (0.067) -0.143*** (0.052)
βLB2 0.520*** (0.154) -0.623*** (0.231) -0.811*** (0.262)
βMA2 0.214** (0.087) 0.700** (0.288) -0.036 (0.065)
βLA × FE 0.402*** (0.052) -0.051 (0.102) 0.405*** (0.086)
βLA × FU -0.088 (0.084) -0.094 (0.126) -0.127 (0.102)
βLA × IN -0.033 (0.173) 0.504*** (0.143) -0.239* (0.123)
βLA × LB 0.104 (0.153) 0.012 (0.167) 0.239* (0.138)
βLA × MA -0.150 (0.128) 0.187 (0.221) 0.563*** (0.124)
βFE × FU 0.056 (0.043) 0.084 (0.062) 0.231*** (0.053)
βFE × IN -0.043 (0.032) -0.172** (0.077) 0.055 (0.038)
βFE × LB 0.210*** (0.065) -0.071 (0.153) -0.217** (0.106)
βFE × MA -0.013 (0.043) -0.037 (0.116) -0.024 (0.040)
βFU × IN 0.020 (0.082) 0.172*** (0.060) -0.044 (0.031)
βFU × LB -0.132 (0.104) -0.020 (0.138) 0.362*** (0.098)
βFU × MA 0.056 (0.038) 0.106 (0.107) 0.243*** (0.063)
βIN × LB 0.163 (0.127) 0.234** (0.103) -0.051 (0.089)
βIN × MA -0.175*** (0.062) 0.137* (0.074) -0.103** (0.044)
βLB × MA -0.255* (0.135) 0.974*** (0.182) -0.140 (0.114)

σu 0.340 —
σv 0.000 —
σ 0.583 —
γ 1.000 —
logL -11.627 -22.391

Separating variables
Constant 1.300** (0.534)
APM practices adopted -4.540** (1.993)
APM intensity/tree/ha -0.075 (0.149)

Posterior probability 1.000 0.891 0.836
APM intensity 0.000 0.223 0.267
Observations 173 125 120

Notes: *, **, and *** denote significance at the 10%, 5%, and 1% levels, respec-
tively. Abbreviations:—FE, fertilisers; FU, fungicides; IN, insecticides; LA, land;
LB, labour; LCSF, latent class stochastic frontier; MA, manure; and SF, stochastic
frontier. Values in parentheses are standard errors. Source: Survey Data (2023)
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adopters, respectively. To validate this classification, we analysed the extent of adop-
tion of APM within each predicted class. The average intensity of APM adoption
among all adopters was 24.5%, equivalent to about four of the eighteen practices con-
sidered. The non-intensive class (Class 1) adopted slightly below this average at 22%,
about four practices, whereas the intensive class (Class 2) adopted above the average
at 27%, translating to approximately five practices.

Class-specific frontier estimates for technical efficiency show substantial het-
erogeneity in production technologies, which reveals the limitations of uniform,
one-size-fits-all assumptions of the production environment when promoting sustain-
able agriculture, particularly in smallholder systems. In fact, of the 28 elasticities,
only 3 (insecticide, land-fungicide- and fertiliser-manure interactions) were consistent
in all three classes. The expected diminishing marginal returns mostly hold for the
non-adopter class, with orchard size (land) as the only input exhibiting an inverse
elasticity with respect to mango yield at the sample mean. Whereas initial increments
in land, labour and manure decrease the yields at the sample average for the non-
intensive class, all else equal, fungicides and manure appear to reduce yields among
the intensive class.

The main results of the class-specific frontier parameters for the eco-efficiency
model are presented in Table 4. The results show a high degree of variation in the mag-
nitude and direction of the environmental impact categories in the three models. The
squared and interaction terms show strong non-linear relationships and interdependen-
cies among environmental indicators, suggesting that trade-offs and complementarities
between inputs critically affect eco-efficiency. As expected, the elasticity of net value
added with various environmental impact categories as well as their interactions are
mostly negative across the three classes at the sample mean. This suggests that these
deleterious impact categories reduce the net value added and should therefore be
minimised to improve the sustainability of the orchards. Nutrient deficits exhibit the
largest elasticities. In particular, the non-intensive class is associated with large coeffi-
cients for phosphorus and nitrogen deficits, suggesting complex nutrient management
challenges compared to the other classes.

3.3.2 Latent class stochastic metafrontier elasticities

Our primary focus was to assess how APM transitions and intensification create
technological heterogeneity and how the transition influences orchard-level efficiency
outcomes in smallholder contexts. To this end, we focus the ensuing discussion on
the metafrontier results. Table 5 presents the parameter estimates of the latent class
stochastic metafrontier model for both technical and eco-efficiency. The estimated
input elasticities suggest diminishing marginal returns across most inputs, consistent
with the quasi-concavity condition of the assumed production technology.

The results indicate that, at the sample mean, land exhibits a negative elasticity,
indicating a 0.43% decline in mango yield for every percentage increase in the orchard
area. However, beyond a certain point, output eventually increase with further land
expansion. An extensive review by Menzel and Lagadec [98] found an inverse relation-
ship between yields per tree and tree density, alongside a positive association between
total yields and tree density. Similarly, Zhang et al. [99] reported a positive relationship
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Table 4: Estimates of class-specific stochastic frontier models (Translog)
for eco-efficiency

Single class SF Two class LCSF

Class 1 Class 2
Non-adopters (Non-intensive) (Intensive)

Parameter Coef. (SE) Coef. (SE) Coef. (SE)

τ0 −2.564*** (0.803) 2.474*** (0.867) 0.207 (0.833)
τCF 2.516*** (0.786) −1.347 (1.168) 1.548 (1.411)
τND 8.087*** (2.376) 6.476 (7.118) −1.415 (3.666)
τPD −3.643*** (1.145) −10.877* (6.297) 0.109 (3.005)
τTOX 1.365*** (0.388) −0.498 (0.490) 0.914** (0.406)
τEN −2.233*** (0.526) 1.339** (0.544) −0.284 (0.667)
τSP −0.065** (0.032) −0.226*** (0.050) 0.149** (0.061)
τCF2 −1.413** (0.697) −1.107 (1.231) −2.335** (1.101)
τND2 −6.805** (2.964) −70.461** (28.799) 5.210*** (1.943)
τPD2 −0.981** (0.471) −47.625*** (17.376) −0.589 (0.879)
τTOX2 −0.126* (0.071) −0.204** (0.080) −0.108* (0.065)
τEN2 −1.397*** (0.280) −0.926*** (0.191) −0.304 (0.282)
τSP2 −0.003 (0.002) 0.001 (0.003) 0.005** (0.002)
τCF×ND −3.508*** (1.346) 3.603 (3.748) −0.592 (2.884)
τCF×PD 1.927** (0.908) −0.700 (2.770) 1.250 (2.113)
τCF×TOX −0.573* (0.316) −0.125 (0.232) −0.173 (0.252)
τCF×EN 0.786** (0.324) −0.388 (0.359) −0.153 (0.489)
τCF×SP −0.041 (0.029) 0.002 (0.056) −0.073** (0.037)
τND×PD 2.954*** (0.887) 61.216*** (22.883) −0.962 (1.146)
τND×TOX −1.475*** (0.563) 8.042*** (2.694) −0.378 (2.059)
τND×EN 2.799*** (0.519) −5.560* (2.844) −0.240 (1.429)
τND×SP 0.156*** (0.044) 0.603*** (0.146) −0.161 (0.232)
τPD×TOX 0.063 (0.200) −7.560*** (2.231) −0.585 (1.640)
τPD×EN −0.705*** (0.180) 4.869** (2.308) 0.602 (1.135)
τPD×SP −0.062*** (0.019) −0.346*** (0.107) 0.073 (0.188)
τTOX×EN 0.663*** (0.217) 0.310*** (0.107) 0.333*** (0.124)
τTOX×SP −0.004 (0.011) −0.008 (0.016) 0.008 (0.010)
τEN×SP 0.008 (0.016) −0.026 (0.025) 0.020 (0.021)

σµ 0.007 0.003 0.004
σν 0.000 0.000 0.000
σ 0.082 0.058 0.061
γ 0.984 0.999 0.994
logL 296.005 261.517 242.819
Observations 173 125 120

Notes: *, **, and *** denote significance at the 10%, 5%, and 1% levels, respec-
tively. Abbreviations:—CF, carbon footprint; LCSF, latent class stochastic frontier;
ND, nitrogen deficit; PD, phosphorus deficit; TOX, pesticide toxicity; EN, energy
balance; SF, stochastic frontier; SP, specialisation. Values in parentheses are stan-
dard errors. Source: Survey Data (2023)

between yield and tree density at levels comparable to those observed in Makueni and
noted diminishing marginal returns at higher densities. These findings suggest that
although individual tree productivity decreases with increasing density, overall land
productivity improves, implying that intensive land use through higher tree density can
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Table 5: Estimates of latent class stochastic metafrontier models
(Translog) for technical efficiency and eco-efficiency

Technical efficiency Eco-efficiency

Parameter Coef. (SE) Parameter Coef. (SE)

β0 0.271*** (0.030) τ0 1.284*** (0.150)
βLA -0.431*** (0.063) τCF 0.171 (0.281)
βFE 0.063* (0.036) τND -1.397*** (0.352)
βFU 0.144*** (0.043) τPD -1.109*** (0.231)
βIN 0.173*** (0.044) τTOX 0.515*** (0.090)
βLB 0.200*** (0.056) τEN 0.125 (0.133)
βMA -0.129*** (0.050) τSP -0.017 (0.012)
βLA2 0.338*** (0.125) τCF2 -1.348*** (0.303)
βFE2 -0.074** (0.030) τND2 3.005*** (0.277)
βFU2 -0.188*** (0.041) τPD2 -0.395*** (0.115)
βIN2 -0.026 (0.027) τTOX2 -0.103*** (0.024)
βLB2 0.506*** (0.079) τEN2 -0.684*** (0.087)
βMA2 0.201*** (0.051) τSP2 -0.002*** (0.001)
βLA×FE 0.173*** (0.038) τCF×ND 0.289 (0.357)
βLA×FU -0.112** (0.052) τCF×PD 0.862*** (0.213)
βLA×IN 0.118** (0.057) τCF×TOX -0.144** (0.072)
βLA×LB 0.177** (0.073) τCF×EN -0.085 (0.126)
βLA×MA 0.040 (0.052) τCF×SP -0.048*** (0.011)
βFE×FU 0.077*** (0.019) τND×PD 0.432*** (0.152)
βFE×IN -0.018 (0.021) τND×TOX -0.497*** (0.140)
βFE×LB 0.142*** (0.039) τND×EN 0.252 (0.164)
βFE×MA -0.035 (0.025) τND×SP 0.070*** (0.016)
βFU×IN 0.006 (0.025) τPD×TOX -0.073 (0.057)
βFU×LB -0.071 (0.049) τPD×EN -0.001 (0.092)
βFU×MA 0.031 (0.027) τPD×SP -0.018** (0.008)
βIN×LB 0.008 (0.066) τTOX×EN 0.256*** (0.038)
βIN×MA -0.017 (0.019) τTOX×SP -0.006* (0.003)
βLB×MA -0.292*** (0.057) τEN×SP 0.014** (0.006)

σu 1.135 0.070
σv 0.005 0.000
σ 1.068 0.266
γ 0.996 0.995
logL 33.365 946.908
Observations 418 418

Notes: *, **, and *** denote statistical significance at the 10%, 5%, and
1% levels, respectively. Elasticities are evaluated at the sample geomet-
ric mean. Abbreviations:—CF, carbon footprints; EN, energy deficits; FE,
fertilisers; FU, fungicides; IN, insecticides; LA, land; LB, labour; MA,
manure; ND, nitrogen deficits; PD, phosphorus deficits; SP, specialisation;
and TOX, toxicity. Values in parentheses are standard errors. Source:
Survey Data (2023).

enhance total yields. The observed non-linear pattern may also reflect initial inefficien-
cies and resource constraints faced by smallholders as orchard size increases, followed
by improved management once farms expand, when commercialisation becomes more
feasible and economies of scale can be exploited.

Labour exhibits an elasticity of 0.20 at the sample mean, implying that a
one-percent increase in man-days devoted to orchard tasks increases mango yield by

20



0.20%. The marginal product of labour rises rather than falls within the observed
range, indicating convexity of the production function for labour use. In practical
terms, once a basic labour threshold is met, each extra man-day allows more thorough
canopy management, quicker detection and correction of pest or nutrient problems,
and more precise timing of cultural operations, all of which reinforce one another.
These complementarities mean that the marginal product of labour rises as additional
hands are brought in, so that yield gains are incremental.

Yield response to manure application is U-shaped with an inverse elasticity of
yields with respect to manure at low application rates and increments in yields with
manure application at higher manure application rates beyond some threshold. Small
application rates often involve fresh or partially matured manure, which can introduce
high concentrations of ammonium and soluble salts into the feeder-root zone, causing
localised root scorch and transient micronutrient imbalances that redirect assimilates
toward vegetative flushes at the expense of floral initiation and fruit set. Over time,
with increased volumes and when manure is fully decomposed or has mineralised in
situ, its release of nutrients often aligns with the orchard’s nutrient demand throughout
flowering and fruit expansion with improved soil structure and microbial activity,
increasing yields.

Fertiliser use shows a positive elasticity of 0.06, suggesting that a 1% increase in
fertiliser use improves the mango yield by 0.06% at the sample mean. Diminishing
marginal returns are observed at higher fertiliser application rates beyond some thresh-
old. Our findings show that fertiliser application is more effective in larger orchards,
possibly due to a better nutrient distribution. These findings align with Zhang et al.
[99]’s evidence that fertilisation management is a key limiting factor in mango pro-
ductivity. In the same light, nutrient deficits show an inverse relationship to NVA. In
line with expectations, a percentage increase in nitrogen and phosphorus deficits per
hectare reduces NVA by 1.41% and 1.16%, respectively. Nitrogen and phosphorus are
crucial to maintaining soil fertility and crop productivity, so deficits directly translate
into lower economic output in the form of fewer harvested fruits. Although the detri-
mental impact of nitrogen deficits decreases at higher levels, possibly as orchards adapt
or change management strategies, the results show that phosphorus deficits intensify
this effect. Nitrogen deficits appear less harmful in highly specialised orchards with
higher tree densities.

Our study shows that each percentage point increase in the application of fungicide
improves mango yield by 0.14% at the sample mean, although the benefits diminish
at higher application levels. These findings are corroborated by El-Nasr et al. [100]
who obtained similar results using a randomised complete block design with ten repli-
cations in an Egyptian mango orchard growing the Keitt variety. The study found
that the foliar application of sulphur significantly reduced the incidence and severity
of powdery mildew, particularly after the second and third sprayings, thus increasing
mango productivity and the physical and chemical characteristics of fruits.

In line with expectations, insecticide use is positively related to yields. A 1%
increase in insecticide use improves the output by 0.17% at the sample mean. This
finding is in line with several studies that have arrived as similar conclusions [29, 34].
The results also indicate that increased effectiveness of insecticides is realised in larger
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orchards than on smaller orchards. Larger orchards are often correlated with higher
levels of expertise. Additionally, larger orchards permit adoption of several systematic
pest management strategies. When pesticides are part of a broad pest management
strategy, the overall effectiveness of pesticides is improved.

Pesticide-related toxicity is positively related to NVA. Within certain limits, the
use of toxic substances such as insecticides, fungicides and herbicides can increase
yields and thereby increase NVA, despite potential environmental and health costs.
However, excessive use of hazardous chemicals eventually becomes counterproductive,
as it kills beneficial organisms vital for ecosystem functioning [101] and poisons farm
workers when used improperly [17, 102], reducing productivity.

As expected, diminishing gains in NVA are observed from higher CO2 emissions,
toxicity, and energy deficits once CO2 emissions exceed a certain threshold, beyond
which emissions begin to undermine productivity and reduce the net contribution
to economic value added. This inverted U-shaped relationship is analogous to the
environmental Kuznets curve hypothesis, which suggests a positive correlation between
economic growth and deleterious environmental impacts, followed by a diminishing,
and eventually inverse relationship at higher levels of economic growth beyond some
threshold. Several studies have reached a similar conclusion. A review by Alae-Carew
et al. [103] found that fruit yields increased with higher concentrations of CO2. Kumar
et al. [104] also found strong positive correlations between carbon footprint and yields
in maize-wheat systems in India. In contrast, a macro-level study in Ethiopia by
Mulusew and Hong [105] reported a negative association between carbon emissions
and agricultural productivity.

Orchard-level energy consumption directly depends on the quantity of intermediate
inputs used. Consequently, it is inversely related to the net value added at higher
levels of economic output. Our findings corroborate this intuition and show an inverse
relationship with NVA at higher levels of energy use, suggesting that higher energy
inputs reduce the economic value added.

3.3.3 Distribution of efficiencies and technology gap ratios

Table 6 shows the distribution of efficiencies and technology gap ratios across the
three classes, along with the environmentally adjusted scores. Figure 4 presents the
distribution of adjusted TGR. For ease of comparison, we also present the distribution
of TGR (Figure 3a) and PTGR (Figure 3b) for various adoption classes. The average
TGR was 78% across all farmers. For non-adopters, this value was highest at 87%
while for adopters, the score was 69%. However, both groups had almost identical
PTGR (98%). The PTGRs remained relatively similar across all groups on average.
These results for PTGRs align with those of Weltin and Hüttel [9] who found that the
eco-efficiency technology gap was almost at the frontier (99%) of system technology.

The average TGRadj for the pooled sample was 77%, suggesting that the overall
technology used by all the orchard managers surveyed is relatively advanced although
not at the frontier (Figure 4). The adopters require more improvements (29.3%)
to attain the same level of output as the best available technology in the industry
compared to non-adopters (14.8%). On the other hand, non-intensive and intensive
classes had TGRadj averaging 68% and 74%, representing a moderate and relatively
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Fig. 3: Distributions of (a) TGR and (b) PTGR across adoption categories. Source: Survey
Data (2023)

close distance from the frontier technology, respectively. This indicates that conven-
tional farmers’ predominant use of synthetic pesticides in fruit fly management puts
them closer to the most efficient technology in the industry. This high TGRadj for
pesticide-reliant orchards is consistent with the well-documented yield gap favouring
conventional practices over low external input systems [12]. In the current case, this can
be attributed to the potent short-term efficacy of synthetic pesticides in suppressing
fruit fly, consequently reducing yield losses.
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Turning to efficiency scores, our findings show an average MTE gap of 11% between
intensive (MTE = 70%) and the non-intensive (MTE = 59%) and conventional (MTE
= 59%) classes (Figure 5a). This finding agrees with the results of Rodrigues et al.
[51] who found that intensive adopters of biological pest control methods were more
technically efficient (86.3%) than non-intensive adopters (82.3%) in Brazilian agricul-
tural systems. On the other hand, our results show only slight differences in MEE
among the three classes of farmers. All classes had average MEE between 93–94%, with
intensive and non-intensive adopters only marginally ahead of the conventional class
(Figure 5b). Weltin and Hüttel [9] found that farmers practicing sustainable inten-
sification were associated with higher eco-efficiency (75%) than non-intensive group
(63%) in Italian farms.
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Fig. 5: Distributions of (a) MTE and (b) MEE across adoption categories. Source: Survey
Data (2023)

The MTEadj incorporates ecological footprints, thus providing a more precise mea-
sure of productive efficiency from a sustainability perspective. On average, orchards
operate at 59% of their potential production once environmental constraints are taken
into account, leaving a shortfall of 41% relative to the frontier (Figure 5 and 6). This
indicates a significant efficiency gap, suggesting a considerable room for improvement
in achieving optimal performance at current input levels. A subgroup analysis indi-
cates that the distribution of efficiency scores is more dispersed among adopters than
among non-adopters. Adopters attain a higher average efficiency score (61%) com-
pared to non-adopters (56%), suggesting that although APM users are closer to the
frontier, both groups exhibit substantial efficiency gaps with the frontier potential.

The stark difference in MTE between intensive and non-intensive and non-adopter
classes persists even after accounting for ecological footprints. While the intensive
class achieves an average MTEadj of 66%, non-intensive and non-adopter classes are
10 percentage points below the intensive class efficiency. Thus, there are no efficiency
gains in non-intensive adoption relative to conventional farmers. These findings suggest
that, under intensive management, mango yield could potentially be increased by
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Fig. 6: Distribution of adjusted MTE for various adoption classes. Source: Survey Data
(2023)

approximately 34% without consuming additional inputs, as opposed to a 44% increase
for the non-intensive class. Limited adoption may fail to substantially reduce pest
pressure while still incurring additional labour and learning costs, yielding little net
benefit. Ultimately, effective fruit fly suppression requires a coordinated, integrated
set of practices rather than isolated measures, which are easily undermined by re-
infestation.

3.4 Treatment effects, sensitivity analysis and robustness
checks

Table 7 presents the treatment effect estimates from IPWRA (fractional probit), PSM
(linear regression), and RA (fractional probit). Despite differences in estimators, the
methods produce substantively similar point estimates, confirming our earlier finding
of negligible selectivity bias on observables. We further assess sensitivity to omitted
variables using Oster’s δ. In IPWRA and RA models, δ falls between 0.97 and 1.72, and
0.97 and 1.53, respectively, while in PSM models it ranges from 0.95 to 1.60, indicating
a relatively strong degree of robustness, since unobserved confounders would need to
be almost at least as influential as included covariates to reduce the estimated effects
to zero. This confirms the insignificant ρ initially observed in the frontier models.
The common-support diagnostics for PSM are displayed in Figure 7. Together, these
findings provide compelling evidence that the estimated treatment effects are robust
and unbiased. However, given the attractive doubly robust property of IPWRA, we
focus the subsequent discussion on the results from Columns 1–6 of Table 7.

The results indicate that the adoption of APM is associated with a positive ATE
of 0.32, although significant only at the 10% level, with a POMean of 0.575. This
indicates that in a counterfactual scenario in which no one in the sample adopted
APM, the average MTEadj score would be approximately 57.5%. In contrast, had
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Fig. 7: Common support (CS) mirror bars: (a) before imposing CS and (b) after imposing
CS.

all orchard managers adopted the APM, the MTEadj scores would have increased by
3.2 percentage points on average. However, according to the ATT, orchard managers
who actually adopted APM improved their scores by 2 percentage points on average.
Non-intensive adoption produces a small, negative effect (ATE = –0.011) that is not
statistically significant, and its associated POMean of 0.564. This suggests that in
a counterfactual world where no orchard manager in the sample adopted APM, the
average efficiency score would be about 56.4%. Based on the ATT estimate, the non-
intensive class realised an insignificant decline of 1.5 percentage points in the efficiency
score on average.

In contrast, intensive use of APM is associated with a positive significant ATE
of 0.81, with a POMean of 0.576. This implies that if all farmers transitioned from
non-adoption to intensive APM use, their efficiency score would increase by roughly
8.1 percentage points on average, up from the baseline of 57.6% if no one adopts the
APM. According to ATT, intensive APM adopters were, on average, associated with
significant increments of 5.6 percentage points in the MTEadj score. The magnitude
of the ATE increases by a percentage when intensive and non-intensive classes are

28



compared, with a POMean of 0.558. Interestingly, the ATT based on this comparison
is higher than the ATE by 1.6 percentage points, indicating a potential selection bias.
However, the consistency of IPWRA, PSM and RA results, together with Oster’s δ,
provides strong confidence that this finding is not an artefact of selectivity or omitted
variable bias, therefore, a possible heterogeneity in treatment effects. We discuss this
shortly in Subsection 3.5. In essence, based on Oster’s δ coefficients, the selection on
observables would have to be at least 95.4% as influential as the observed covariates
to explain away these results.

Similar findings have been reported in extant literature. In Kenya, a comprehensive
IPM package for mango fruit flies disseminated by the ICIPE was found be associated
with a 54.5% reduction in produce rejection and up to 22.4% increase in farmers’ net
income in pilot areas [36]. In a larger trial, mango farmers using various components
and combinations of the IPM package saw fruit loss drop by 30%, pesticide expenditure
nearly halved, and net income rise by 48% compared to non-adopters on average [34].
In conformity to our findings, the study found that while intensive adopters increased
net income by 115%, those who used only one component reported 7% decline in net
income. Midingoyi et al. [29] found that while the introduction of 1-2 IPM practices
raised yields by between 6–27% and farm income by roughly 9–33% relative to non-
adoption, intensive users (those who implemented three or more practices) recorded
yield advantages of 95% and income improvements of 137% compared to non-adopters.
Pecenka et al. [106] found that using only some IPM options did not significantly
reduce crop damage, whereas a full suite of IPM practices nearly eliminated (up to
95%) chemical sprays through conservation of wild pollinators and natural enemies
while maintaining yields, improving profitability while enhancing ecosystem services.
These findings demonstrate that with sufficient intensification and proper manage-
ment, agro-ecological approaches can match or even outperform the productivity of
pesticide-reliant systems, lending weight to the idea that sustainable intensification is
achievable.

3.5 Heterogeneity in treatment effects

The CATE estimates reveal considerable heterogeneity in MTEadj attributable to the
intensity of APM adoption (Figure 8). Orchard managers who perceive the pest as
severe experience the highest treatment effects (Figure 8a). These farmers are likely
to be more conscious and intentional in their approach to suppressing the pest since
they already recognise its potential effects on yields. Participation in co-creation activ-
ities lifts the CATE well above the sample-wide ATE, with 95% confidence bands
that remain entirely above zero (Figure 8i). This reflects the central role of knowledge
sharing in labour-intensive agro-ecological systems. Farmer-to-farmer learning reduces
search and experimentation costs, enabling faster mastery of synergistic interactions
of APM options that lead to efficiency gains. The CATE curve slopes upwards beyond
upper primary schooling, attaining a marked upward shift at roughly 10 years of educa-
tion, indicating that better educated orchard managers experience the highest positive
effects from APM use (Figure 8d). The diminishing marginal return beyond secondary
schooling, however, suggests that basic agronomic literacy rather than advanced cre-
dentials is sufficient for sizeable gains. Educated farmers are more likely to process
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technical information better, adjust input mixes and time operations precisely, thereby
capturing the synergistic effects of APM.
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Fig. 8: Doubly robust conditional average treatment effect (DRCATE) estimates illustrating
heterogeneous effects on environmentally adjusted efficiency. The dotted blue line depicts the
ATE, the solid line the CATE, and the olive-teal shaded band the 95% confidence interval.
Source: Survey Data (2023)
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Other social-context variables such as gender, age, household size, and number
of neighbouring adopters all produce CATE ribbons that overlap zero almost every-
where (Figures 8e , 8b, 8f, and 8h). Among the adopters, gender and age of the
manager do not yield significant differences, illustrating that, conditional on access to
information and resources, women and older farmers can benefit equally from APM.
This suggests that the APM’s effectiveness is relatively gender-neutral and resilient to
variations in orchard-manager’s age, household labour endowment or peer adoption
density. Balogun et al. [107] reported similar results in a study of Nigerian pineap-
ple farms. This finding aligns with the principle of fairness in agroecology. Tailored
information transfer mechanisms can close any residual gaps.

In contrast, biophysical moderators exert a selective influence on MTEadj. Orchard
density displays a concave pattern, with moderate densities between 20–66 trees/acre
yielding more positive CATEs, whereas poorly and overly dense orchards do not
(Figure 8g). Managing canopy competition and pest microclimates could be easier at
intermediate densities, allowing the APM intervention to reach full agronomic poten-
tial. Rootstock age exhibits wide confidence intervals that straddle zero throughout
(Figure 8c), implying negligible and highly uncertain moderation.

3.6 Drivers of environmentally adjusted inefficiency

Table 8 presents the average marginal effects from a bootstrap fractional probit
regression for the determinants of adjusted inefficiency. The Wald test statistic was sig-
nificant at the 1% level, confirming the joint significance of the predictors. A negative
coefficient shows that a variable reduces inefficiency and vice versa.

We found a non-linear relationship between APM adoption intensity and ineffi-
ciency. In the initial stages, greater adoption of APM practices reduces inefficiency, but
beyond some threshold, increased intensification begins to undermine efficiency. This
finding suggests a possible optimal level of APM adoption after which adding more
practices yields less benefit and may even strain the farmer’s management capacity.
The APM is a complex strategy with high labour demand for proper coordination of
practices. Beyond some optimal mix, the farmer could experience management fatigue
or confusion, leading to suboptimal management. This non-linear effect suggests that
sustainable intensification needs to be optimised, not maximised. For instance, certain
combinations of integrated pest management components have been found to provide
the highest impact, whereas other combinations are less beneficial [34, 95]. This sug-
gests that what matters is selecting the right mix of agro-ecological options rather than
simply implementing as many as possible. Policymakers and extension agents should
thus emphasise an optimal integration approach by encouraging farmers to adopt a
sufficient breadth of APM measures to reliably control fruit flies, but also guide them
on which combinations are most synergistic to avoid overburdening them. The evi-
dence of a non-linear effect also has a behavioural dimension. If farmers try to adopt
APM practices “too much too fast,” with limited knowledge of their synergistic inter-
actions, they might become overwhelmed and experience diminishing returns in the
short-run, which could discourage them or their peers from persevering with APM,
leading to dis-adoption. Thus, managing the intensity of adoption to match farmers’
capacity and context is important for sustained adoption and efficiency improvements.
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Table 8: Estimates of bootstrap fractional probit for the determinants
of environmentally adjusted inefficiency

Variable Coef. (SE) AME (SE)

Formal education (years) -0.016** (0.007) -0.006** (0.003)
Household size (count) -0.012 (0.009) -0.005 (0.003)
Gender (1 = male) -0.048 (0.054) -0.018 (0.021)
Intensity (semi-continuous) -1.400*** (0.505) -0.538*** (0.193)
Intensity squared 4.554*** (1.475) 1.748*** (0.564)
Orchard prospects (1 = positive) -0.200** (0.095) -0.077** (0.036)
Age of rootstock (years) -0.008** (0.003) -0.003** (0.001)
ln(Tree density (trees/acre)) -0.049 (0.036) -0.019 (0.014)
Number of orchards (count) 0.013 (0.046) 0.005 (0.018)
Group membership (1 = yes) -0.125** (0.051) -0.048** (0.019)
Credit access (1 = yes) 0.153* (0.088) 0.059* (0.034)
Off-farm income (KES/year)† -0.007 (0.006) -0.003 (0.002)
Mango export quantity (kg) -0.001*** (0.000) -0.001*** (0.000)
Co-creation (1 = yes) -0.117** (0.048) -0.045** ( 0.018)
Extension access (1 = yes) -0.005 (0.051) -0.002 (0.020)
Distance to input market (meters) 0.007 (0.018) 0.003 (0.007)
Constant 0.650*** (0.227)

Log pseudo-likelihood -279.512
Wald χ2(16) 57.94***
Pseudo R2 0.14
Replications 1000
Observations 418

Notes: *, ** and *** denote significance at the 10%, 5%, and

1% levels, respectively. † This variable was transformed using an
inverse hyperbolic sine to reduce skewness and heteroscedasticity
while accommodating zero observations. AME denotes the average
marginal effect. Values in parentheses are bootstrapped standard
errors. Source: Survey Data (2023).

Having a positive attitude towards orchard prospects reduced inefficiency by 7.7%.
A positive outlook corresponds to a longer-term investment mindset. Optimistic farm-
ers are willing to experiment and invest time and resources now for future payoffs. In
contrast, farmers who are uncertain about their orchard’s future might be less moti-
vated to implement new practices, or may cut back on management effort, reducing
efficiency. This result aligns with the role of expectations in input decisions and tech-
nology adoption. Growers who believe mango farming has a viable future are more
inclined to adopt sustainable practices so that expected returns drive current adoption
behaviour. Policies aimed at boosting farmer morale and outlook, such as financial
incentives, recognition programs, and support services, can enhance efficiency. Exten-
sion programs should incorporate elements that foster positive attitudes, such as
success stories and motivational training.

Membership in a group decreased inefficiency by 4.8%, suggesting that collective
action and group dynamics can enhance efficiency. Similar findings were reported
by Rodrigues et al. [51] in Brazilian agricultural regions, where efficiency increased
with association membership. Groups often provide platforms for sharing knowledge,
resources, and support, which can lead to improved management practices and reduced
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inefficiency. Social capital facilitate the exchange of information and best practices
among members, leading to better-informed decisions and more efficient practices
[108]. Membership in a group can also provide better access to resources such as
credit, improved inputs, and technology, which can enhance efficiency. Groups can also
facilitate collective bargaining for negotiating better prices for inputs and outputs,
reducing their costs. In pest management, farmer groups can also be used as avenues
for coordinating interventions (e.g., synchronising fruit fly sanitation across villages),
to achieve scale effects that an individual cannot [109].

Participation in knowledge co-creation and co-production activities reduced inef-
ficiency by 4.5%. Collaborative learning enable the sharing of best practices, experi-
ences, and innovative solutions among farmers, researchers, and other stakeholders.
Co-creation activities can lead to the development of tailored solutions that are sus-
tainable and well-suited to local conditions and challenges [53, 110]. Working together
also fosters trust and strengthens social networks, which can facilitate the adoption
and intensive use of sustainable practices and innovations [111]. Farmers who have
worked alongside researchers or extension agents to test and refine APM strategies
are likely to gain deeper insights into pest ecology and control methods, allowing
them to fine-tune their practices. Extension programs should prioritise participatory
approaches, engaging farmers and other stakeholders in the development and dissem-
ination of agricultural innovations. Farmer field schools, participatory research and
multi-stakeholder platforms focused on collaborative skills and participatory meth-
ods can further enhance the effectiveness of knowledge co-creation and co-production
activities. Such participatory extension ethos have been shown to build lasting skills
and confidence among farmers, thus improving outcomes even past the expiration of
the formal projects [109].

Each additional year of formal education associated with a 0.6% reduction in
inefficiency. Education has a direct link to better problem-solving skills, increased
awareness in eco-friendly production, better absorption and implementation of com-
plex agro-ecological knowledge, optimal management of farm operations, and increased
adaptation to new technologies. Additionally, more educated farmers might be bet-
ter at seeking out and utilising information from research, extension services, and
peer networks to improve their orchard management capabilities. Education has long
been recognised as a driver of farm level efficiency, effectively by improving man-
agerial ability [108]. For example, various studies have found that fruit farmers with
more schooling achieve significantly higher output from the same input bundle than
their less-educated peers [112–114], even though some studies such as Mensah and
Brümmer [115] have reported negative impact. Understanding the biology of pests and
the proper implementation of IPM tactics can be knowledge-intensive; thus, education
lowers the barriers to effective adoption of APM. Enhancing the reach and quality of
extension services can provide orchard managers with the necessary knowledge and
support to improve their practices. Creation of digital tools and platforms to access
information and connect with other orchard managers and experts can lower barriers
to access pest management knowledge and innovations.

Orchards with older rootstocks were associated with lower inefficiency. This aligns
with the findings of Reddy et al. [116] and Smith et al. [117], who reported a positive
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correlation between cumulative fruit yield during the initial 16 years and that of the
subsequent years, although the yields in successive years were not directly correlated.
Heidenreich et al. [48] also found a positive relationship between efficiency and age of
trees. Older mature trees (within a reasonable age) often have well-established root sys-
tems, greater resilience to environmental stress, and more consistent production levels
as they reach full production potentials. Established trees require less intensive man-
agement, which might lead to less consumption of inputs. Furthermore, farmers with
older trees are often more experienced in orchard management, making them more
knowledgeable about various farming aspects, and hence more efficient. The observa-
tion may also be due to life-cycle effects. Young orchards are still in establishment
phase and therefore produce lower yields with the same level of pest management.
As trees mature, yield rises faster than pest control costs, raising efficiency. Although
older rootstocks can be more efficient, they may start to decrease productivity at some
point. Therefore, it is important to balance the age profile of trees within an orchard
for optimal performance. We did not find a significant effect of planting density or
number of orchard plots on the efficiency, suggesting that within the observed range,
variations in how intensively trees are planted did not systematically affect how well
inputs were converted to harvested fruit. Both sparse and dense orchards have trade-
offs. Although dense orchards get higher yield per area, they face more pest pressure
and competition that even out in efficiency terms.

The quantity of mango fruit exported was negatively associated with inefficiency.
Farmers who export larger fruit quantities are more likely to adopt sustainable
practices to meet the strict export standards. Additionally, these farmers are likely
to be more commercialised, prioritising minimal consumption of inputs as a profit
maximisation strategy.

It should be noted that access to extension services did not show a significant
impact on efficiency in our analysis. Although this might seem counter-intuitive, as
extension is usually expected to improve farmers’ knowledge and performance, the
current extension services in the study region are not yet effective in promoting APM
or improving management relative to what farmers learn from other sources. In fact,
extension messages from private providers (such as input companies) and agricultural
officers have in the past focused on conventional practices and general advice, rather
than the specialised support needed for mastering the new agro-ecological techniques.
In contrast, the strong effects of group-based learning and co-creation suggest that
innovative, participatory forms of knowledge transfer have been more impactful than
traditional top-down extension in this context. Unless extension agents are well-trained
in the new technology and engage intensively with farmers, the uptake of such complex
practices can remain lackadaisical. More interactive and farmer-centered extension
approaches, such as group trainings, demonstrations, and on-farm trials, are needed to
translate access to advice into actual productivity and efficiency gains at the orchard
level.

Limitations of the study

Although this study provides insights on the efficiency effects of agro-ecological tran-
sitions in smallholder settings, it was not without limitations. First, our data do not
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account for the temporal dimensions of economic and ecological sustainability. We
focused on intermediate inputs, externalities, and outputs but not on longer-term eco-
efficiency impacts. Therefore, these findings should be interpreted with caution. Future
analyses with longitudinal data spanning multiple seasons and with larger sample sizes
could uncover more insights as various pest population dynamics, such as resurgence,
resistance, or secondary pest outbreaks, could be captured. Second, the overall level
of intensification of the APM measures in our sample was generally low. On aver-
age, all adopters implemented only four practices out of the 18 practices considered.
This reflects the fact that most farmers are still lower in the agro-ecological transi-
tion pathway. As more farmers transition and effectively intensify APM, we expect
the aggregate ecological benefits of such transitions to be more pronounced at both
the farm level and the landscape scale.

4 Conclusions and policy implications

Agro-ecological pest management offers a holistic and synergistic alternative that can
yield win-win outcomes in economic, environmental and social terms. Our findings cor-
roborate this eco-efficiency premise and suggest that by shifting to, and subsequently
intensifying APM, farmers can narrow and ultimately surpass the productivity and
efficiency gap vis-á-vis conventional farmers. Although the theoretical yield frontier of
chemical pest control remains higher, intensive APM adopters operated closer to their
frontier, whereas many conventional growers underperformed relative to the latent
potential of their technology. Thus, efficiency in management can be as important as
the choice of a technology itself.

Promoting APM is not only an environmental imperative, but also an avenue for
rural economic development. Efficient production means lower unit costs and better
profitability, which is vital to livelihoods and food security. As more farmers adopt
APM intensively, the aggregate supply of mango could increase or stabilise in the
face of pest pressure, contributing to food security and improving farm income. A
shift to APM facilitates compliance with strict export requirements, such as the Euro-
pean Union’s Maximum Residue Level regulations, and avoids costly fruit rejection
and frequent bans, thus securing access to lucrative markets. Policymakers should link
orchard managers to agro-ecological certification programs targeting high value mar-
kets or alternatively create conditions that aid in the provision of agro-ecological price
premiums. This could create an additional economic incentive for orchard managers
to accelerate their transition to agro-ecological farming.

It should be emphasised that the efficiency gains for intensive adopters in our study
stemmed primarily from achieving higher fruit yields and concomitantly fewer yield
losses rather than from systematic reductions in input usage or mitigation of negative
outputs, compared to other classes. Chemical savings did not differentiate efficiency
scores, in part because most smallholders already apply minimal insecticides for cost
reasons. This can be observed in the environmental benefits of intensive APM adop-
tion that are only marginally ahead of the non-adopters group. Realising productivity
gains currently requires considerable knowledge and management skill, and farmers
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face a private trade-off between short-term yield maximisation and long-term sus-
tainability. There is need for conserted efforts among all stakeholders in the mango
value chain that aim to support farmers during the transition phase so that the task
of maintaining environmental intergrity is not left to farmers alone. Policy interven-
tions should therefore be carefully designed to create enabling conditions for farmers
to overcome the initial hurdles of adoption and intensification.

Given the diminishing returns observed at high levels of APM intensification,
extension agents and policymakers should also emphasise quality and optimisation of
practices over sheer quantity. It is important to communicate to farmers that adopt-
ing a core set of well-chosen APM strategies and executing them properly will likely
yield the best results.

The lack of efficiency gains among non-intensive adopters suggests a potential risk
for farmers who attempt APM in a limited way since they may not immediately see
its benefits and could dis-adopt these practices. This outcome would stall the broader
goal of reducing reliance on chemical pesticides. Policies should aim to lower the entry
costs and risks of full APM adoption. One direct approach could be through finan-
cial support. Subsidies or cost-sharing programs for APM inputs can encourage more
widespread and intensive adoption. By offsetting these costs initially, farmers can
implement a comprehensive set of practices and are more likely to see positive results,
which could facilitate sustained use. Ensuring the local availability of APM inputs and
technologies is vital. Even if farmers are motivated, they cannot adopt practices that
are inaccessible. This requires strengthening supply chains by encouraging local enter-
prises or cooperatives to produce and sell these inputs at reduced costs. Policymakers
could provide incentives such as tax breaks or grants for agribusinesses that focus on
sustainable crop protection products, thus integrating APM supplies into mainstream
agricultural markets. When farmers can easily access and afford the needed inputs at
the right time, the friction of adopting APM is greatly reduced.

The need for area-wide collective action is critical in the management of mobile
pests such as fruit fly. Without neighbouring orchards practising orchard sanitation
and baiting, mobile pests can quickly reinfest treated plots, discouraging sustained
adoption of APM. Widespread partial or piecemeal uptake may therefore trap farmers
in a vicious cycle of disappointment and dis-adoption, leading to reversion to chemical
control.

Knowledge and training programs should be improved and re-oriented towards
participatory learning. This calls for a multi-pronged approach to capacity building.
Traditional extension services should be updated to include specific training on APM
techniques since many extension officers in the past predominantly advised on chemical
control. Ministries of agriculture could design sessions for “training of trainers” to
equip extension staff with the latest agro-ecological knowledge, possibly in partnership
with research organisations and universities. Moreover, farmer field schools and other
participatory training models should be increased in mango-growing regions. This
experiential learning can convincingly demonstrate the efficacy of APM, addressing
the skepticism that many farmers may naturally have. We recommend scaling up
participatory learning platforms where farmers not only receive information but also
actively experiment, observe, and share experiences. Such platforms should create
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local champions to mentor other farmers. This peer mentorship can sustain knowledge
dissemination beyond the life of formal programs.

In strengthening training, social networks and farmer groups should be leveraged.
Governments and development agencies can foster the formation of mango farmer
associations or integrate pest management topics into existing cooperative meetings.
These groups can serve as conduits for collective training sessions, bulk purchasing
of inputs, and even coordination of pest control efforts. For example, a community
group could organise a weekly “orchard sanitation day” where all members ensure
that no fallen fruit remains in their farms, thereby collectively reducing the area-wide
pest reservoir. Policies could facilitate this by employing village-based facilitators to
mobilise such actions. Strengthening farmer organisations also improves their bargain-
ing power in the value chain, indirectly aiding efficiency by potentially securing better
fruit prices and reduced input costs through group purchasing.
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Appendix A

Table A1: Likelihood ratio tests for functional form and technology
heterogeneity

Model Test Null hypothesis (H0) Statistic p-value

TE LR Cobb-Douglas 113.290*** 0.000
EE LR Cobb-Douglas 710.300*** 0.000

TE GLR No systematic error variance 134.766*** 0.000
EE GLR No systematic error variance 293.135*** 0.000

Notes: *** denotes statistical significance at the 1% level. Abbreviations: LR,
Likelihood ratio; GLR, Generalised likelihood ratio. Source: Survey Data (2023).
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